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The first total synthesis of Eudistomins Y1–Y6, brominated phenolic b-carboline marine metabolites with
a unique benzoyl moiety at C1, have been prepared in three steps, utilizing MAOS, in overall yields rang-
ing from 6% to 25%.
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Figure 1. Representative b-carboline alkaloids 1–4.
b-Carboline alkaloids are a prevalent class of biologically active
natural products 1–4 with a wide range of structural (Fig. 1) and
pharmacological (cytotoxic, antiviral, antimicrobial, etc.) diver-
sity.1–11 Of these, the eudistomins represent an ever-expanding
sub-class isolated from marine tunicates of the Eudistoma
genus.12–21 Since the initial discovery by Rinehart in 1987 of Eud-
istomins A–Q (4),12 additional members Eudistomins R–W have
been reported.12–21

In 2008, seven new b-carboline-based metabolites, coined Eud-
istomins Y1–Y7 (Fig. 2) were isolated from a tunicate of the genus
Eudistoma off the coast of Korea by Kang and co-workers.22 These
new metabolites differ from all previously reported Eudistomins
A–W by the presence of a benzoyl group at C1. Preliminary biolog-
ical evaluation demonstrated that Eudistomin Y6 (10) had a mod-
erate antibacterial activity against Gram-positive bacteria
(Staphylococcus epidermis and Bacillus subtilis, MICs of 12.5 and
25 lg/mL, respectively) without cytotoxicity in an MTT assay at
100 lM.22 However, no synthetic efforts toward these novel
metabolites have been reported to date.

We, and others, have developed expedited synthetic routes to
access b-carboline alkaloids, and our laboratory has also synthe-
sized unnatural analogs with unique and unexpected biological
activities.23 Based on the unique structures of Eudistomins Y1–Y7

(5–11), the initial biological activity, and the potential for diver-
sity-oriented synthesis once an expedient synthetic route was in
place, we initiated a total synthesis campaign targeting 5–11.

Our retrosynthetic analysis is shown in Scheme 1. We envi-
sioned the direct precursor of Eudistomins Y1–Y7 (5–11) to be an
appropriately functionalized 1-benzyl-4,9-dihydro-3H-pyrido[3,4-
b]indole 12, that could be oxidized to deliver 5–11.24 Tricycle 12
would be accessed through a Bischler–Napieralski reaction25 with
intermediate 13, which could be prepared by a coupling reaction
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Scheme 3. Total synthesis of Eudistomin Y2 (6).

Scheme 4. Total synthesis of Eudistomin Y3 (7).

Scheme 1. Retrosynthetic analysis of Eudistomins Y1–Y7 (6–11).
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between the appropriately functionalized p-hydroxyphenylacetic
acid 14 and (1H-indol-3-yl)ethanamine 15.

Our synthetic efforts initially focused on Eudistomin Y1 (5), the
simplest member of this class (Scheme 2). A standard EDCI/HOBt
coupling reaction between (1H-indol-3-yl)ethanamine 16 and p-
hydroxyphenylacetic acid 17 gave 18 in 79% yield. Classical Bisch-
ler–Napieralski conditions proved sluggish, so we developed
microwave-assisted conditions (POCl3, toluene, 120 �C, 30 min)
which smoothly delivered 19. Multiple oxidation conditions were
also explored, including standard ht/O2, but good results were ulti-
mately achieved with MnO2 under another microwave-assisted
protocol to produce Eudistomin Y1 (5) in 31% yield for the two
steps with crude 19. Thus, a rapid three-step, two-pot sequence
was designed and optimized to access the Eudistomin Y1–Y7 (5–
11) scaffold in 25% overall yield.26

To access the brominated congeners, Eudistomins Y2–Y7 (6–11),
we were pleased to find that all of the requisite starting materials
were readily accessible, except the 2-(6-bromo-1H-indo-3-yl)eth-
anamine required to synthesize 11, which was readily prepared.

Similarly, Eudistomin Y2 (6) was prepared by a standard EDCI/
HOBt coupling reaction between 2-(5-bromo-1H-indol-3-yl)ethan-
amine 19 and p-hydroxyphenylacetic acid 17 gave 20 in 90% yield
(Scheme 3). Our microwave-assisted Bischler–Napieralski condi-
tions provided 21, which carried forward crude into a micro-
wave-assisted MnO2 protocol to deliver Eudistomin Y2 (6) in 20%
yield for the two steps and 18% overall.

Eudistomin Y3 (7), containing a bromine on the benzoyl moiety,
was prepared by a standard EDCI/HOBt coupling reaction between
Scheme 2. Total synthesis of Eudistomin Y1 (5).
(1H-indol-3-yl)ethanamine 16 and 3-bromo-4-hydroxyhydroxy-
phenylacetic acid 22 to afford 23 in 98% yield (Scheme 4). Applica-
tion of a now standard microwave-assisted Bischler–Napieralski
protocol provided crude 24, followed by our microwave-assisted
MnO2 protocol to deliver Eudistomin Y3 (7) in 15% yield.

Eudistomin Y4 (8) possess bromines on both the (1H-indol-3-
yl)ethanamine component 14 and the p-hydroxyphenylacetic acid
15. Fortunately, our standard three-step, two-pot sequence proved
to work with equivalent efficiency (Scheme 5). In the event, 2-(5-
bromo-1H-indol-3-yl)ethanamine 19 was coupled to 3-bromo-4-
hydroxyhydroxyphenylacetic acid 22 employing EDCI/HOBt condi-
tions to provide 25. Two successive microwave-assisted reactions
(Bischler–Napieralski and MnO2 oxidation) delivered Eudistomin
Y4 (8) in 15% overall yield.

Following the protocols outlined in Schemes 1–4, Eudistomins
Y5 and Y6 (9 and 10) were synthesized in three steps with overall
yields of 7% and 6%, respectively (Scheme 6). While the amide cou-
pling steps proceeded in high yields, the polybrominated sub-
Scheme 5. Total synthesis of Eudistomin Y4 (8).



Scheme 6. Total synthesis of Eudistomin Y5 (9) and Y6 (10).
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strates performed poorly in the microwave-assisted Bischler–Napi-
eralski and MnO2 oxidation reactions.

In every case, the 1H and 13C NMR spectra of the synthetic Eud-
istomins Y1–Y6 matched that reported for the natural products (5–
10).27 Attempts to prepare Eudistomin Y7 failed employing this
methodology, due perhaps to stereoelectronic effects and or solu-
bility issues of the polybrominated scaffold. Overall yields for the
three-step, two-pot process were low, but not unexpected based
on the electronics of the system with the carbonyl moiety at C1.
For the Bischler–Napieralski and MnO2 oxidation steps, thermal
conditions failed entirely. Only MAOS provided the desired Eudis-
tomin scaffold, but in modest to poor yields.

Thus, the first total synthesis of Eudistomins Y1–Y6 (5–10) has
been completed, requiring only three synthetic steps in a two-
pot process and with overall yields ranging from 6% to 25%. We
are currently evaluating 5–10 against a large panel of discrete
molecular targets in radioligand binding assays,28 and we are in
the process of initiating a diversity-oriented synthesis campaign
to synthesize libraries of unnatural analogs.29 These efforts are
underway and will be reported in due course.
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